大学高数分布积分法,求过程,大神谢谢了! 17.18两个题
2个回答
展开全部
17.
∫[a:b]xf''(x)dx
=∫[a:b]xd[f'(x)]
=xf'(x)|[a:b]-∫[a:b]f'(x)dx
=bf'(b)-af'(a) -f(x)|[a:b]
=bf'(b)-af'(a)-[f(b)-f(a)]
=bf'(b)-af'(a)-f(b)+f(a)
=[bf'(b)-f(b)]-[af'(a)-f(a)]
18.
(1)
∫[0:+∞]xe^(-x)dx
=-∫[0:+∞]xd[e^(-x)]
=-xe^(-x)|[0:+∞]+∫[0:+∞]e^(-x)dx
=-(0-0)-e^(-x)|[0:+∞]
=-(0-1)
=1
(2)
∫[2/π:+∞](1/x²)sin(1/x)dx
=cos(1/x)|[2/π:+∞]
=cos0-cos(π/2)
=1-0
=1
∫[a:b]xf''(x)dx
=∫[a:b]xd[f'(x)]
=xf'(x)|[a:b]-∫[a:b]f'(x)dx
=bf'(b)-af'(a) -f(x)|[a:b]
=bf'(b)-af'(a)-[f(b)-f(a)]
=bf'(b)-af'(a)-f(b)+f(a)
=[bf'(b)-f(b)]-[af'(a)-f(a)]
18.
(1)
∫[0:+∞]xe^(-x)dx
=-∫[0:+∞]xd[e^(-x)]
=-xe^(-x)|[0:+∞]+∫[0:+∞]e^(-x)dx
=-(0-0)-e^(-x)|[0:+∞]
=-(0-1)
=1
(2)
∫[2/π:+∞](1/x²)sin(1/x)dx
=cos(1/x)|[2/π:+∞]
=cos0-cos(π/2)
=1-0
=1
追问
谢谢你啦!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询