3个回答
展开全部
这属于高阶可降阶类型 F(y,y',y'',···,y^(n))=0
令y'=z, 并以它为新应变量,y为新自变量,则方程可降一阶
y'=z,则y''=dz/dx=dz/dy*dy/dx=dz/dy*y'=dz/dy*z 注意 y二阶导表示y一阶导再对x求导 原方程变为 (dz/dy)*z=ksiny 这样就是一阶的可分离变量方程了z*dz=ksiny*dy 两边积分 1/2z^2=-kcosy +c1 即1/2(dy/dx)^2=
-k(cosy+c2) dy/dx=√-2k(cosy+c2) 接下来差不多了吧?
令y'=z, 并以它为新应变量,y为新自变量,则方程可降一阶
y'=z,则y''=dz/dx=dz/dy*dy/dx=dz/dy*y'=dz/dy*z 注意 y二阶导表示y一阶导再对x求导 原方程变为 (dz/dy)*z=ksiny 这样就是一阶的可分离变量方程了z*dz=ksiny*dy 两边积分 1/2z^2=-kcosy +c1 即1/2(dy/dx)^2=
-k(cosy+c2) dy/dx=√-2k(cosy+c2) 接下来差不多了吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
shankai
参考资料: a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询