设随机变量X 服从几何分布,分布律为p{X=K}=P*(1-P)的k-1次方

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部
下面的计算利用幂级数展开式(通过1/(1-x)=∑{k,0,∞}x^k,x∈(-1,1)容易证明) :\x0d\x0a1/(1-x)²=1+2x+3x²+4x³+?=∑{k,0,∞}(k+1)*x^k,x∈(-1,1) ①\x0d\x0a \x0d\x0a注意到0<1-p<1\x0d\x0aE(X)=∑{k,1,∞}k*p*(1-p)^(k-1)\x0d\x0a =p*∑{k,0,∞}(k+1)*(1-p)^k\x0d\x0a =p*1/[1-(1-p)]² 由①\x0d\x0a =1/p\x0d\x0a \x0d\x0a为计算D(X),可先求出幂级数∑{k,0,∞}(k+1)²*x^k,x∈(-1,1)的和函数\x0d\x0a令S(x)=∑{k,0,∞}(k+1)²*x^k,x∈(-1,1),则\x0d\x0a∫{0,x}S(x)dx=∫{0,x}[∑{k,0,∞}(k+1)²*x^k]dx\x0d\x0a =∑{k,0,∞}∫{0,x} [(k+1)²*x^k]dx\x0d\x0a =∑{k,0,∞}(k+1)*x^(k+1)\x0d\x0a =x*∑{k,0,∞}(k+1)*x^k\x0d\x0a =x*1/(1-x)² 由①\x0d\x0aS(x)=[ x/(1-x)²]'=(1+x)/(1-x)³,即\x0d\x0a∑{k,0,∞}(k+1)²*x^k=(1+x)/(1-x)³,x∈(-1,1) ②\x0d\x0a \x0d\x0a∵E(X²)=∑{k,1,∞}k²*p*(1-p)^(k-1)\x0d\x0a =p*∑{k,0,∞}(k+1)²*(1-p)^k\x0d\x0a =p*[1+(1-p)]/[1-(1-p)]³ 由②\x0d\x0a =(2-p)/p²\x0d\x0a \x0d\x0a∴D(X)= E(X²)-[E(X)]²\x0d\x0a =(2-p)/p²-1/p²\x0d\x0a =(1-p)/p²
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式