当x趋近于0,cosx-cos2x是x的几阶无穷小

 我来答
机器1718
2022-08-24 · TA获得超过6836个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:161万
展开全部
设cosx-cos2x是x的n阶无穷小,n为自然数.那么原题就相当于当(cosx-cos2x)/x^n=常数时,求n的值.对(cos-cos2x)/x^n使用洛必达法则=(-sinx+2sin2x)/nx^(n-1),此时当n>=1时,原式仍为0/0型,所以使用洛必达法则=(-cosx+4cos2x)/n(n-1)x^(n-2)
此时,当n>2时,分号上半部分等于4,下半部分等于0.那么原式=无穷.与题设不符合.所以n=2.
此时验证n=2的情况,原式=(-cosx+4cos2x)/n(n-1)x^(n-2)=3/2
所以cosx-cos2x是x的2阶无穷小.
证毕
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式