函数的单调性:请解释为什么“同增异减”

 我来答
咪音乐享
2017-06-13 · TA获得超过724个赞
知道小有建树答主
回答量:181
采纳率:0%
帮助的人:67.6万
展开全部
是指复合函数的单调性判断法则吧。
设由函数y=f(u)和u=g(x)复合而成的函数为y=f[g(x)].
如果g(x)在[a,b]上是增函数,f(u)在[g(a),g(b)]上是增(减)函数,那么复合函数y=f[g(x)]在[a,b]上增(减)函数.
如果g(x)在[a,b]上是减函数,f(u)在[g(b),g(a)]上是增(减)函数,那么复合函数y=f[g(x)]在[a,b]上减(增)函数.
把闭区间换成其他单调区间,比如开区间、半开区间,也有这个结论.
简而言之,外层与内层的单调性若相同,则复合函数是增函数;若相异,则复合函数是减函数. 记忆口诀:“同增异减”
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式