高等数学问题 求大佬解答
展开全部
先讨论极限
lim<n→∞>(1/n^2)[n^3/(n^2+1^2) + n^3/(n^2+2^2) + ... + n^3/(n^2+n^2)]
= lim<n→∞>[n/(n^2+1^2) + n/(n^2+2^2) + ... + n/(n^2+n^2)]
= lim<n→∞>∑<k=1,n>{1/[1+(k/n)^2)]}(1/n) = ∫<0, 1> dx/(1+x^2) = π/4.
因 lim<n→∞>sin(1/n^2) = lim<n→∞>(1/n^2), 故本题极限是 π/4
lim<n→∞>(1/n^2)[n^3/(n^2+1^2) + n^3/(n^2+2^2) + ... + n^3/(n^2+n^2)]
= lim<n→∞>[n/(n^2+1^2) + n/(n^2+2^2) + ... + n/(n^2+n^2)]
= lim<n→∞>∑<k=1,n>{1/[1+(k/n)^2)]}(1/n) = ∫<0, 1> dx/(1+x^2) = π/4.
因 lim<n→∞>sin(1/n^2) = lim<n→∞>(1/n^2), 故本题极限是 π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询