怎么用导数求极限?
1个回答
展开全部
具体回答如下:
x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x
所以e^tan-e^x等价于tanx-x
x→0时,tanx-x等价于x^n,
=lim(x→0) (tanx-x)/x^n
=lim(x→0) ((secx)^2-1)/nx^(n-1)
=lim(x→0) (tanx)^2/nx^(n-1)
=lim(x→0) x^2/nx^(n-1)
=lim(x→0) x^(3-n)/n
n=3
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询