超越数是指不满足任何整系数(有理系数)多项式方程的实数,即不是代数数的数。因为欧拉说过:“它们超越代数方法所及的范围之外。”(1748年)而得名。
几乎所有的实数都是超越数。
1882年,德国数学数学家林德曼(Lindemann,1852~1939)证明了圆周率 π=3.1415926…… 是超越数。
实数中除代数数以外的数,亦即不满足任一个整系数代数方程 (n为正整数, ≠0)的数。理论上证明超越数的存在并不难,而且可知超越数是大量的。
但要构造一个超越数或论证某个数是超越数就极为困难。现今只有少量的数如π,e,等的超越性得到了证明,对其他一些有兴趣的数的超越性的研究是数学家十分关注的事。
扩展资料:
超越数的证明,给数学带来了极大的变革,它证明了几千年来数学上的难题——尺规作图三大问题,即倍立方问题、三等分任意角问题和化圆为方问题都是尺规不能问题(无法用尺规证明的问题)。
π和e的无穷级数形式
有趣的是,π和e可以用无穷级数表示:
π=4*(1/1-1/3+1/5-1/7+1/9-1/11+……)=4*∑((-1)^n/(1+2n)),n∈N
e=1/(0!)+1/(1!)+1/(2!)+1/(3!)+1/(4!)+1/(5!)+……. =∑1/(n!),n∈N
π的反正切函数形式
除了无穷级数形式,π还可以用反正切函数表示:
π=16arctan1/5-4arctan1/239
π=24arctan1/8+8arctan1/57+4arctan1/239
如果一个实数满足形式如anx n+a(n-1)x (n-1)+a(n-2)x (n-2)+~~+a2x 2+a1x+a0=0的整数系数的代数方程,其中N自然数。an,a(n-1),a(n-2),--,a2,a1,a0都是整数,an>0,那么,这个实数就称作代数数。在实数中除了代数数外,其余的都是超越数。
超越数的存在是由法国数学家柳维尔在1851年最早证明的。关于超数的存在,柳维尔写出了下面这样一个无限小数。a=0.11000100000000000000000100--,并且证明取这个a不可能满足上面所列出的整数系数方程,由此证明了它不是一个代数数,而是一个超越数。后来人们为了纪念他首次证明了超越数,所以把数A称为柳维尔数
柳维尔数证明手,许多数学家都致力于对超越数的研究。1873年,严肃埃尔米特又证明了自然对数底E的超越性,从而使人们对超越数的认识更为清楚。1882年,德国数学家林德曼证明了圆周率也是一个超越数。这样,实数就可以按下面的方法来分类:
实数
||
代数数超越数
||
有理数无理数
超越数的证明,给数学带来了大的变革
希望能帮到你,满意望采纳哦
例如:
自然对数的底e就是一个超越数。仅仅可以用《级数展开》来计算它的近似值2.71828……
同样,圆周率π也是。3.1415926535……
1844年,法国数学家刘维尔(J.liouville,1809 ~ 1882)首先证明了超越数的存在性。厄米特与林德曼先后证明了 e 与 π 为超越数。