
2个回答
展开全部
因为AB为圆O的直径、CD是弦、且AB垂直CD
所以弧BC=弧BD
所以∠BCD=∠A
因为OA=OC
所以∠A=ACO
所以∠ACO=∠BCD
2)
因为AB为圆O的直径、CD是弦、且AB垂直CD
所以CE=DE=CD/2=12cm
设半径为R
则在三角形COE中根据勾股定理得
CE^2+OE^2=OC^2
即12^2+(R-8)^2=R^2
解得:R=13(cm)
所以圆的面积=π*R^2=169π(cm^2)
打了半天 给我加分
所以弧BC=弧BD
所以∠BCD=∠A
因为OA=OC
所以∠A=ACO
所以∠ACO=∠BCD
2)
因为AB为圆O的直径、CD是弦、且AB垂直CD
所以CE=DE=CD/2=12cm
设半径为R
则在三角形COE中根据勾股定理得
CE^2+OE^2=OC^2
即12^2+(R-8)^2=R^2
解得:R=13(cm)
所以圆的面积=π*R^2=169π(cm^2)
打了半天 给我加分
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询