水平井开发技术

 我来答
中地数媒
2020-01-17 · 技术研发知识服务融合发展。
中地数媒
中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命
向TA提问
展开全部

以油藏三维地质建模为指导,优化水平井方案设计,配套研究了适合特低渗透油藏特点的水平井轨道设计及控制技术、完井方式优选、提高固井质量和压裂配套等技术。

1.三维地质建模

三维地质建模是地震、测井、地质等多方面信息的综合反映,它主要是应用地质统计学、层序地层学、现代沉积学、随机理论及计算机可视化技术对油藏地质进行综合研究,并建立能够反映地下储层结构及物性参数非均质性的三维定量地质模型。建立州201区块地质模型的目的,一是建立三维可视化和数字化模型,为数值模拟提供前期的数据准备;二是为水平井钻井提供地质导向模型;三是通过储层预测模型,为开发井钻井调整提供参考。

(1)建模软件优选

通过对目前流行的商业建模软件RMS、GoCad和Petrel进行分析比较,认为Petrel软件是一套比较好的油藏精细描述和建模工具。它涵盖从地震解释、储层建模到油藏模拟的所有领域,使得地质家、地球物理师及油藏工程师在同一平台上,以有效的方式合作。Petrel建立的油藏地质模型较好地考虑了地质模型如何更好地为油藏数值模拟服务。在建立油藏地质模型过程中,Petrel充分考虑了网格的空间形态及网格结构特征对数值模拟计算速度的影响。Petrel建立的地质模型在数模中具有较好的计算性能,它严格遵循等时建模+成因控制储层相建模+确定性建模约束随机性建模(相控储层建模)等一系列地质建模原则,确保了储层三维定量模型的准确性。因此,储层建模采用了Petrel软件。

(2)建模技术应用

三维地质建模的一体化工作是在建立模型数据结构库的基础上(包括地震数据、储层反演数据、钻井数据、地层数据、断层数据及地质趋势和沉积信息),建立构造模型、储层砂体模型及储层属性模型,进而建立储层参数模型。通过网格粗化和生产动态分析与调整,最后进行数值模拟网格设计地质模型粗化与输出。

应用Petrel建模软件,结合地震资料及完钻井资料,建立了州201区块47.3km2的地质模型。根据本区实际情况,确定了技术路线:以地震解释的层位、断层结果为基础,建立储层构造模型;在地震储层预测成果的约束下,采用序贯指示模拟法获得多个砂体骨架模型,进行优势相计算,确定最终砂体骨架模型;在砂体骨架模型内,采用序贯指示模拟法,对有效砂体进行模拟建模,在多个有效砂体骨架模型实现的基础上,进行优势相计算,确定最终有效砂体骨架模型;以有效砂体骨架模型为约束,采用序贯高斯模拟法,建立多个储层物性参数模型,并进行平均计算,建立最终的储层物性参数模型。为确保地质模型精度,采取了以下技术措施:

一是利用Petrel软件中的三维可视化技术对断层解释结果进行观察,对地震断层解释数据进行大量的整理和修改,消除了一些突然变化的与客观地质不符的畸变现象。二是在断面处理过程中加入了地震资料剖面质量控制,使得断层线尽可能与剖面断层特征吻合。通过精细的断层线处理,使断层线倾角相互间具有继承性,断面又相对光滑,保证断层之间正确的切割关系,使断层的分布及相互之间的关系与扶杨油层构造图具有基本相同的特征。三是通过断层的修正与Pillar gridding的反复多次工作,消除由断层质量问题给网格带来的尖峰现象,很好地控制了Pillar网格化质量。四是采用空变成图技术,保证了深度域构造图具有较高精度。在建模中采用深度域构造图与对应的t0相除,求得各层位的速度场。在Petrel中以小层顶面数据为约束,建立了三维速度模型。采用所建速度模型对构造模型进行了时深转换,保证时深转换精度。五是将井点钻遇砂体情况作为一种属性,利用地震资料进行约束,建立了区块砂体属性模型。

(3)三维构造模型建立

构造模型由断层和层面模型组成。断层模型是根据地震解释和井资料校正的断层文件,建立断层在三维空间的分布;层面模型反映的是地层界面的三维分布。将地震解释的地层层面数据和测井分层数据相结合,建立FⅠ—FⅢ共17个小层的三维层面构造模型,用断层面切割地层层面,叠合后即为三维构造模型(图6-11)。

根据州201区块扶杨油层地质模型,对FⅠ5、FⅠ7两个主力层砂体建立了预测模型。从预测模型结果看,与储层沉积特征分析结果相吻合,FⅠ7显示较大规模河流沉积特征,其他非主力层多为窄河道砂体。

2.水平井优化设计方法

应用概念模型模拟了扶杨油层河道砂储层水平井-直井不同组合井网方式、不同长度与初期产量、不同方位水平井的开发效果,分析如下:

比较水平井与直井不同组合布井方式的开发效果,水平井注水—水平井采油开发效果最好,直井注水—水平井采油次之。考虑水平井钻井前需一定量的直井导向井,选用水平井—直井联合开发布井方式。

比较水平段长度与初期产量关系,结果表明:当水平段长度大于800m后产量增加幅度明显减小。在单层有效厚5.0m、空气渗透率小于1.5×10-3μm2、流度小于0.35×10-3μm2/mPa·s时,要达到经济极限产量,水平段长度大于575m;若空气渗透率大于1.5×10-3μm2、流度大于0.35×10-3μm2/mPa·s时,水平段长度大于500m。

长垣东部地应力为近东西向,油层改造后主裂缝也是东西向,扶杨油层注水后就存在方向性见水问题。比较不同方位水平井开发效果,结果表明,当裂缝不发育时,垂直方向累计产量高,开发效果最好;当裂缝发育或压裂导致注采井沿主裂缝方位沟通时,水平方向开发效果最好。因此,设计水平段方位与裂缝发育方向一致。

根据建模结果,以模拟的砂体分布为依据,在水平井设计过程中,将大规模连片分布的河道砂体作为钻遇目的层;同时考虑各砂体之间的跨度和水平井顺利施工的要求,州201区块的3口水平井采用了3种井轨方式:常规水平井、阶梯水平井和分支阶梯水平井。

(1)肇29-平30井

建模结果切片显示,该井区只有FⅠ5层的砂体发育,厚度相对较大。其中仅FⅠ53单砂体分布稳定,设计该井水平井目的层为FⅠ53。对只发育一个单砂体的井区,采用常规水平井钻井。

根据该井设计井位的区域构造、沉积特征及地应力资料,对单砂体进行了细分对比研究,并根据砂岩发育情况设计了水平井轨迹。采用安全、易于钻进和控制的井轨,自西向东小角度下倾钻遇FⅠ53砂体,设计水平段长度568m。

图6-11 州201试验区三维构造模型

此井设计为水平井注水井,投产初期不压裂投注,试注后根据注水状况再确定是否压裂。另外,考虑到水平井规模化发展的需要,为充实现有地质资料,对肇29-平30井设计钻井取心20m。

该井于2006年6月17日开钻,钻井过程中发现设计目的层(FⅠ53)在靠近肇29-31井方向砂体发育变差,于2006年7月9日提前完钻。该井实际钻遇水平段长度445m,钻遇含油砂岩长度245m,含油砂岩钻遇率55.1%。共取心2筒,心长11m。

(2)肇33-平28井

建模结果显示,只有FⅠ7层砂体发育,该层发育FⅠ72、FⅠ73两个小层,为两期河道叠加而成,因此,设计该井水平井的目的层为FⅠ72、FⅠ73。对发育多个跨度较小的单砂体,采用阶梯式水平井钻井。

该井区FⅠ7层主要发育FⅠ72和FⅠ73两个小层,设计先钻进FⅠ72层,垂深1732m,在该层中水平钻进210m后钻FⅠ73层,再水平钻进210m后完钻,整个水平段长度为500m。另外,设计取心20m。

该井于2006年6月12日开钻,7月15日完钻。在FⅠ72层实际完钻水平段长度249m,与方案设计结果基本相符。后期向下钻FⅠ73层,完钻水平段长度232m。全井实际完钻水平段长度549m,钻遇含油砂岩长度481m,含油砂岩钻遇率100%。在FⅠ73层取心2筒,心长11m。

(3)肇分31-平28井

建模结果显示,在水平井设计井轨横向切片上FⅠ7、FⅡ5两个层砂体发育,但两个层之间的跨度大,根据周围直井统计,平均跨度58m,为保证储量的有效动用,该井设计上分支以FⅠ72、FⅠ73为目的层,下分支以FⅡ51、FⅡ52为目标层。对发育两个以上跨度较大、层内发育多个单砂体的井区,采用同向分支阶梯式水平井钻井。

FⅠ7层主要发育3组单砂体,其中FⅠ72和FⅠ73厚度较大;FⅡ5主要发育两组单砂体(FⅡ51和FⅡ52)。根据单砂体发育情况,设计第一分支先钻进FⅡ51,入靶点A垂深1794.5m,水平钻进150m后,再中靶FⅡ52,水平钻井299m完钻。第二分支入靶点在FⅠ72,入靶点砂岩厚度约4.0m,有效厚度2.2m,水平钻进137m后,再中靶FⅠ73,水平钻进287m完钻。上下分支水平段长度均为504m。该井为水平井采油井,考虑到扶杨油层自然产能低,为了提高产能,对该井压裂投产。

该井下分支于2006年4月18日开钻,钻井过程中发现FⅡ51层厚度发育较大,为确保钻遇率,在FⅡ51层实际完钻水平段长度296m,比方案设计水平段长度(150m)增加了146m。后期向下钻FⅡ52层时,随钻测井显示含油砂岩厚度仅0.8m,钻穿该层后完钻。该分支实际完钻水平段长度481m,钻遇含油砂岩长度308m,含油砂岩钻遇率100%。

上分支于2006年5月11日开钻,在FⅠ72层实际完钻水平段长度238m,比方案设计水平段长度(136m)增加了102m。后期向下钻FⅠ73层,水平段长度76m。该分支实际完钻水平段长度458m,钻遇含油砂岩长度314m,含油砂岩钻遇率100%。

试验区完钻3口水平井结果显示,砂体预测模型比较可靠。其中肇分31-平28、肇33-平28井钻遇砂岩基本与建模预测结果一致,都钻遇两期河道,含油砂岩钻遇率达到100%。肇29-平30井在FⅠ53钻遇含油砂岩水平段长度245m后,岩性发生变化,由含油粉砂岩变为泥质粉砂岩,最后变为泥岩,表明FⅠ53小层的河道宽度在250m左右,与预测有一定差距。在钻遇245m含油砂岩后,由于没有追踪到其他河道,导致含油砂岩钻遇率较低。

3.特低渗透储层水平井限流法一次压裂多层工艺

针对州201试验区储层物性差、自然产能低,必须压裂投产的实际,开展了水平井限流法一次压裂多层技术攻关。

(1)水平井限流法压裂射孔完井优化

射孔孔数优化:州201试验区水平井均设计在一个小层或小层组内,但根据该区块直井统计,同层间不同井的破裂压力差别最大为3.9MPa。因此,为保证同井筒内各射孔压裂段均能压开,射孔孔眼摩阻必须大于4MPa。根据大庆所有射孔枪弹的射孔穿透能力及水泥靶实际射孔孔眼边缘均匀情况的调查统计,其中孔径为8.8mm的8.8DP36RDX-1型射孔枪、弹组合最适合水平井限流法压裂施工。因此,确定水平井限流法压裂的单孔最低排量为0.3m3/min。

油田现有的压裂车组及采用的井口和地面管汇压力指标为70MPa,施工排量最高可达到7.6m3/min,因此,对应的最大理论孔数为7.6~0.3m3/min(孔≈25孔)。

实施限流法压裂时,在直井段下入压力计,进行射孔有效孔数反演计算,射孔孔眼有效率平均为70.6%。考虑到现场实际排量受压裂泵车影响较大,为保证每个射孔孔眼单孔排量达到0.3m3/min以上,初步设计单孔限流排量为0.35~0.4m3/min,即限流法保守射孔孔眼数为:19~22孔。

射孔方位优化:扶杨油层水平井多为薄互层中的物性相对较好的储层,裂缝的上下延伸方向主要受物性控制。针对这一情况,摸索了3种射孔方位:从最初的1/3圆周射孔、1/2圆周射孔发展到3/4圆周射孔。从压裂工艺发展过程分析,射孔方位对射孔孔眼数较少的限流法影响不大,3/4圆周射孔的方式更有利于降低近井复杂性和阻力产生的概率。因此,3/4圆周射孔的方式成为主要射孔方式之一。

(2)水平井限流压裂优化设计方法

一是形成了合理分段布缝的方法。首先,根据裂缝和砂体在实钻轨迹上的投影位置与周围注水井的关系,对横向裂缝,避开对应水井,均匀布缝,避免裂缝间干扰;对纵向裂缝,避免重叠。其次优选的压裂段位于含油砂岩内,电性显示明显,含油饱满、总烃含量高。另外,人工裂缝尽量沟通邻近的油层,实现一缝穿多层,保证增产效果。二是针对不同裂缝与水平井段夹角关系,形成了利用横向裂缝(应用FracPT)、纵向裂缝(应用Go-hFer2005)压裂软件进行施工规模、施工参数优化及产能预测技术。

(3)水平井限流压裂裂缝诊断和测试技术

限流法压裂的关键是必须保证各裂缝都有足够的射孔孔眼吸液,使地层破裂并延伸。它的准确诊断是限流法压裂的关键所在。为此,近几年通过大量测取各种管径、排量组合的摩阻及大小喷嘴的摩阻,使孔缝摩阻计算更准确,从而解决了限流法有效孔数准确判断难的问题。同时,研究成功通过小型测试压裂、应用G函数直接判断裂缝压开数的测试与解释技术,使水平井限流压裂各缝压开率大幅度提高。通过压裂后密闭测井温证实,水平井限流法各缝压开率达到了100%。

(4)限流法压裂保持井底压力的施工控制方法

研究形成了始终保持井底压力的施工控制方法。射孔孔眼变大后,通过提高单孔排量,保持同样的孔眼摩阻,即当孔眼由8.8mm增加到9.94mm时,只要单孔排量提高到0.4m3/min,摩阻为5.4MPa,仍然能够超过4.2MPa限流压裂的界限,保证各裂缝均能顺利延伸并被支撑剂良好填充。

(5)适应大排量、高砂比的耐磨压裂管柱

通过中心管优选耐磨材质,改进工具连接部位的结构,采用橡胶垫充填间隙,研制了Y344-115封隔器,提高压裂管柱的耐磨性。管柱结构由安全接头、防磨接头、水力锚、两级Y344-115封隔器、喷嘴组成。采用两级Y344-115封隔器,在提高管柱的承压性能的同时,还可满足耐温90℃、耐压70MPa的要求。在水力锚设计有12个锚爪,提高其锚定性能,可满足124mm套管耐压70MPa的要求。

东莞搏信智能
2024-10-16 广告
东莞市搏信智能控制技术有限公司的卷材张力控制系统,是业界领先的解决方案之一。该系统通过高精度传感器实时检测卷材张力,结合智能算法自动调节,确保卷材在生产过程中保持稳定的张力状态。该系统易于操作,维护方便,且具备高度可靠性和稳定性,广泛应用于... 点击进入详情页
本回答由东莞搏信智能提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式