二次函数应用题? 50
卖一份套餐,$450的时候卖1000份,之后每减去10块钱就可以多卖100份,设定多少的价钱可以使利益最大。...
卖一份套餐,$450的时候卖1000份,之后每减去10块钱就可以多卖100份,设定多少的价钱可以使利益最大。
展开
6个回答
展开全部
此题条件只能求出买的价钱虚孝最多,不能求出利润最大。
设价钱设定为 450-10x, 则可卖悉茄出 1000+100x 份
总收益 S = (450-10x)(1000+100x) = 1000(45-x)(10+x)
= 1000(450+35x-x^2) = 1000[450-17.5^2-(x-17.5)^2]
= 143750 - 1000(x-17.5)^2
x = 17.5 时, 收入最高是 143750 , 此时价睁誉察格为 275
设价钱设定为 450-10x, 则可卖悉茄出 1000+100x 份
总收益 S = (450-10x)(1000+100x) = 1000(45-x)(10+x)
= 1000(450+35x-x^2) = 1000[450-17.5^2-(x-17.5)^2]
= 143750 - 1000(x-17.5)^2
x = 17.5 时, 收入最高是 143750 , 此时价睁誉察格为 275
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
经过计算 卖270或280利益最小 所以你可以卖270
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
成本多少呢?你没说明白,万一成本430呢,是吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询