2个回答
展开全部
首先:任何一个正整数除以3所得的余数只有3种情况:余0(整除)、余1、余2. 所以对于任意的四个正整数A、B、C、D除以3最多可以有3个不同的余数
(1)不妨设ABC余数各不相同,那么第四个数D除以3的余数只能是0、1、2中的一个余数,这样就和ABC中的一个余数相同(比如A),那么D-A就是3的倍数. (2)假设ABC中存在两个数除以3所得余数相同(不妨设是AB),那么A-B就是3的倍数.
综上所述,任意4个自然数中至少有两个数的差是3的倍数.
(1)不妨设ABC余数各不相同,那么第四个数D除以3的余数只能是0、1、2中的一个余数,这样就和ABC中的一个余数相同(比如A),那么D-A就是3的倍数. (2)假设ABC中存在两个数除以3所得余数相同(不妨设是AB),那么A-B就是3的倍数.
综上所述,任意4个自然数中至少有两个数的差是3的倍数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询