关气候变化对全球生态环境的影响如何?
目前,关于全球气候变暖的事实已为人们普遍接受。据研究,本世纪80年代气候变暖最为明显,近百年5次平均气温最高的年份均出现在这10年里。但是,有关气候变化的原因、趋势及其对全球生态环境的影响如何?目前存在着一些不同的认识。这些认识大致可以归为两种。
一种观点认为,全球气候变暖与“温室效益”(greenhouse effect)有直接关系。由于全球工业化进程的加速,向大气中排放的温室气体(包括二氧化碳、甲烷、氟里昂、氮氧化合物等)的含量迅速增长,阻挡了地面辐射热的散失,致使大气温度升高。根据近30多年来的观测结果,人们对大气中二氧化碳含量的时空变化已有所了解。据研究,在工业革命以前,大气中的二氧化碳含量的体积分数约为(270~290)×10-6,而现在大气中二氧化碳含量的体积分数已增加到340×10-6。尽管世界各地上空的二氧化碳含量有所不同,但有两点则是共同的。一是,大气中二氧化碳含量在逐年增加,其年度变化率比较一致。二是,各地二氧化碳含量具有明显的季节变化。据科学家的研究表明,大气中二氧化碳含量的体积分数正在以每年0.8×10-6的速度增长。有人估计,按此速度在今后50年内大气中的二氧化碳的含量将比工业革命以前增加1倍,由此而引起的大气温度将升高1.5~3.0℃,地球气候将产生明显的变化。据政府间气候变化专业委员会的预测,如果人类对环境不采取任何保护措施,100年以后全球地面气温将增加4℃多,海平面每10年升高3~10cm,到21世纪末将升高0.3~1.0m。甚至有的科学家认为,今后50~200年内由于全球气温升高,南极西部冰的融化可能导致海平面上升5m,地球上可能出现像中生代那样的世界性的动物灭绝。尽管这些预测都有一定的根据,但又都是不确定的。人们现在可以肯定的是,大气中二氧化碳含量在迅速增加,气候在变暖,如果这个过程继续下去的话,地球气候无疑将发生明显的变化。
另一种观点认为,目前的气候变暖与“温室效应”并无直接的关系。它与地球上一个温和的冰后期一致,也许是19世纪末结束的“小冰期”的后果。也就是说,全球增温是地球气候循环中的自然现象。关于全球变暖的发展趋势,他们根据极地区域冰核中氧同位素资料,推测出地球气候的自然循环,认为目前地球气候处于自然冷却期,这将抵消二氧化碳的影响。还有人指出,地球上已知的化石燃料只够使用100~200年,人类不可能无休止地使用化石燃料;同时考虑到海洋、植被等对二氧化碳的吸收能力,全球二氧化碳循环将达到新的平衡。在这种情况下,今后地球生态环境会发生明显的变化,但不可能会招致毁灭性的灾难。但是,这种假说目前尚缺乏较多的证据,也无法否定全球增温与大气中二氧化碳含量增加相吻合的事实。因此,迄今多数科学家相信“温室效应”理论。但是,这个理论有一个关键问题还没有解决,这就是海洋在全球二氧化碳平衡中的作用问题,即海洋吸收、储存和转移大气中二氧化碳的能力有多大?海洋对大气中二氧化碳增加的反馈作用如何?等等。
研究表明,大气中的二氧化碳通过海—气界面进入海洋,并通过海洋中各种化学的、物理的和生物的过程吸收、储存和转移。因此,海洋对大气中二氧化碳含量的变化起着重要作用。据初步估计,人类每年向大气中排放的二氧化碳,大约有一半进入海洋。海洋在吸收和储存二氧化碳方面,是通过化学和生物的作用,把大气中的二氧化碳转化为碳的化合物。海水的二氧化碳化合物形态主要是碳酸(H2CO3),而海洋植物对二氧化碳的利用,以及碳酸钙、碳酸镁等的形成,都会直接影响海水中二氧化碳的含量。观测表明,二氧化碳在海洋中的垂直分布变化很大,海洋表层中二氧化碳的储存量占整个海洋中的二氧化碳含量的85%,而占海洋体积90%的中、深水层二氧化碳储存量仅占15%。这说明海洋中尚具有储存二氧化碳的巨大潜在容量。研究还表明,海洋中的二氧化碳与大气中的二氧化碳并不处于平衡状态,这与海洋的物理过程有关。例如,在北纬50°的大西洋,二氧化碳从大气进入海洋,那里的表层海水向北冰洋方向流动,水温迅速降低,二氧化碳在海水中的溶解度增加,海—气之间二氧化碳不平衡加剧,使大气中更多的二氧化碳进入海洋。而在赤道太平洋,由于深层冷水涌升到温度较高的海面,海水中二氧化碳出现过饱和,此时海洋便向大气释放二氧化碳。初步估计,海—气之间这种二氧化碳交换速率,大约每年每平方米为20mL二氧化碳。另外,据估算海洋储存二氧化碳的能力,仅溶解碳(不包括颗粒有机碳和无机碳)一项,大约为大气储存能力的56倍。
海洋对大气中二氧化碳的另一个重要影响,是碳的运输和转移在海洋二氧化碳分布和海—气之间交换速率所起的控制作用。它包括水平运输和垂直转移,主要取决于海洋环流、生物生产力和物理—化学过程。现已发现,其中生物过程的贡献尤为重要,特别是所谓的“生物泵”在垂直转移过程中发挥了重大作用,它促进了碳从海表层向深层的转移。研究表明,生物的初级生产主要限于真光层,浮游植物在那里进行光合作用吸收二氧化碳,并将其转化为颗粒态,即浮游植物细胞,然后通过食物链逐级转化为更大的颗粒。而在中层带则由浮游动物的活动所控制。因此,海洋碳的垂直转移主要依靠浮游动物的碎屑和粪粒来完成。另外,由于在光合作用的过程中同时有大量的产品以溶解有机碳的形式释放到海水中,它又可以被异养微生物利用转化为颗粒有机碳,所以溶解有机碳在化学过程中也起着不可忽视的作用。
研究还表明,海洋中碳酸盐(主要碳酸钙和碳酸镁)的形成和沉积是碳转移的另一个途径。碳酸钙和碳酸镁的表现溶度积与海水的温度、盐度、压强有关,但研究发现,温度和盐度并不是影响海水碳酸钙饱和度的主要因素,决定的因素是碳酸根。而影响碳酸盐浓度主要是海水中的二氧化碳浓度。
尽管目前关于海洋对大气中二氧化碳的作用研究已经取得了不少重要成果,但是还有许多的未知领域有待进一步探讨。因此,在全球变化研究中已经把它作为全球海洋通量研究的主题列入计划,以确定和深入了解在全球尺度海洋控制碳及其有关生源要素通量变化的过程,估计海洋与大气、海底和陆架界面间的交换量,进而为研究和预测长期气候变化服务。
2024-07-22 广告
广告 您可能关注的内容 |