2个回答
展开全部
(5) ∫<0, π/4> (tanx)^2 dx = ∫<0, π/4> [(secx)^2-1]dx
= [tanx - x]<0, π/4> = 1 - π/4
(6) ∫<0, 3π/4> √(1+cos2x) dx = ∫<0, 3π/4> √[2(cosx)^2] dx
= √2∫<0, 3π/4> |cosx| dx
= √2 {∫<0, π/2> cosx dx + ∫<π/2, 3π/4> -cosx dx}
= √2 {[sinx]<0, π/2> + [-sinx]<π/2, 3π/4>}
= √2 (1 + 1/√2 + 1) = 1 + 2√2
= [tanx - x]<0, π/4> = 1 - π/4
(6) ∫<0, 3π/4> √(1+cos2x) dx = ∫<0, 3π/4> √[2(cosx)^2] dx
= √2∫<0, 3π/4> |cosx| dx
= √2 {∫<0, π/2> cosx dx + ∫<π/2, 3π/4> -cosx dx}
= √2 {[sinx]<0, π/2> + [-sinx]<π/2, 3π/4>}
= √2 (1 + 1/√2 + 1) = 1 + 2√2
更多追问追答
追问
第六题第三步好像少了个根号2吧
追答
提到积分号外了
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询