求大佬解一下这个不定积分
2个回答
展开全部
令 √[x/(1+x)] = u, 则 x/羡穗(1+x) = u^2,
x = u^2/(1+u^2) = 1-1/(1+u^2), dx = 2udu/(1+u^2)^2
I = ∫[(1+u^2)/u^2] 2u^2du/(1+u^2)^2
= 2∫du/(1+u^2) = 2arctanu + C
= 2arctan√山派薯[x/逗者(1+x)] + C
x = u^2/(1+u^2) = 1-1/(1+u^2), dx = 2udu/(1+u^2)^2
I = ∫[(1+u^2)/u^2] 2u^2du/(1+u^2)^2
= 2∫du/(1+u^2) = 2arctanu + C
= 2arctan√山派薯[x/逗者(1+x)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询