在平行四边形ABCD中,E. F分别为边AB.CD的中点,BD是对角线,过点A作AG"DB,交CB的延长线于点G
3个回答
展开全部
(1)证明:∵四边形ABCD是平行四边形
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=1
2
AB,DF=1
2
CD,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=1
2
AB=AD,
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=1
2
AB,DF=1
2
CD,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=1
2
AB=AD,
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点
∴BE=
12AB,DF=
12CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF,
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,∠ADB=90°,
∵E为AB的中点,
∴DE=BE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
回答者:teacher012
(1)
在平行四边形ABCD中,AB=CD
故BE=DF,又二者平行,所以DEBF是平行四边形,
所以DE平行BF
(2)AG//BD
故角DBC为直角
所以BF=DF
(中线等于斜边的一半)
又DEBF是平行四边形,所以是菱形
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点
∴BE=
12AB,DF=
12CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF,
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,∠ADB=90°,
∵E为AB的中点,
∴DE=BE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
回答者:teacher012
(1)
在平行四边形ABCD中,AB=CD
故BE=DF,又二者平行,所以DEBF是平行四边形,
所以DE平行BF
(2)AG//BD
故角DBC为直角
所以BF=DF
(中线等于斜边的一半)
又DEBF是平行四边形,所以是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,
(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.
解答:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点
∴BE=
12AB,DF=
12CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF,
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,∠ADB=90°,
∵E为AB的中点,
∴DE=BE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.
解答:证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点
∴BE=
12AB,DF=
12CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF,
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,∠ADB=90°,
∵E为AB的中点,
∴DE=BE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询