3个回答
展开全部
(cosx)^2 开方不是 cosx ! 规范解法 :
I = ∫<0, π> x√[(sinx)^2-(sinx)^4]dx = ∫<0, π> x√(sinx)^2(cosx)^2]dx
= ∫<0, π> x|sinxcosx|dx = ∫<0, π/2> xsinxcosxdx + ∫<π/2, π> x(-sinxcosx)dx
= (1/2)∫<0, π/2> xsin2xdx - (1/2)∫<π/2, π> xsin2xdx
= (-1/4)∫<0, π/2> xdcos2x + (1/4)∫<π/2, π> xdcos2x
= (-1/4)[xcos2x-(1/2)sin2x]∫<0, π/2> + (1/4)[xcos2x-(1/2)sin2x]<π/2, π>
= π/8 + π/4 + π/8 = π/2
I = ∫<0, π> x√[(sinx)^2-(sinx)^4]dx = ∫<0, π> x√(sinx)^2(cosx)^2]dx
= ∫<0, π> x|sinxcosx|dx = ∫<0, π/2> xsinxcosxdx + ∫<π/2, π> x(-sinxcosx)dx
= (1/2)∫<0, π/2> xsin2xdx - (1/2)∫<π/2, π> xsin2xdx
= (-1/4)∫<0, π/2> xdcos2x + (1/4)∫<π/2, π> xdcos2x
= (-1/4)[xcos2x-(1/2)sin2x]∫<0, π/2> + (1/4)[xcos2x-(1/2)sin2x]<π/2, π>
= π/8 + π/4 + π/8 = π/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询