矩阵简化成行最简形矩阵的技巧

 我来答
线上兼职社
高粉答主

2020-02-28 · 专注于分享线上兼职,记录点滴生活。
线上兼职社
采纳数:201 获赞数:10484

向TA提问 私信TA
展开全部

矩阵简化成行最简形矩阵的技巧:

初等变换化矩阵为行最简形,主要是按照次序进行,先化为行阶梯形,再化为行最简形。

其中化成下三角的技巧主要就是“从左至右,从下至上”,找看起来最容易一整行都化为0或者尽可能都化为0的一行(一般是最下面一行),将其放至最后一行,然后通过初等变换将这一行的元素从左至右依次设法都变成0直至无法化简。

扩展资料:

矩阵化简常用公式与结论:

1、R(A)=R(A^T)。

2、R(A)+R(B)<=R(A+B)。

3、如果A可逆,则R(AB)=R(B);如果B可逆,则R(AB)=R(A)。

4、A是m*n矩阵,b是n*p阶矩阵,如果AB=0那么R(A)+R(B)<=N。

5、设A是N阶方阵(N>2),那么R(A*)=N,当R(A)=N;R(A*)=1,当R(A)=N-1;R(A*)=0;当R(A)<=N-1。

6、如果A是可逆矩阵,那么包括对称性,可逆性,正交性等矩阵的重要性质A与A*同时具有或同时不具有,即互为充要条件

众里寻ta寻不到
高能答主

2018-11-17 · 答题姿势总跟别人不同
知道顶级答主
回答量:12.1万
采纳率:70%
帮助的人:6490万
展开全部
化成下三角的技巧主要就是“从左至右,从下至上”,找看起来最容易一整行都化为0或者尽可能都化为0的一行(一般是最下面一行),将其放至最后一行,然后通过初等变换将这一行的元素从左至右依次设法都变成0直至无法再化为0为止。
接着从这一行的上一行开始依次从左至右化为0,不停重复直至处理完第一行。最后要检查首非零元是否从最后一行开始依次往左移,如不是,要换行调整到是为止。例:
2341
0123
0001
这样就算完成了第一步。(有个小诀窍,题目中一般要做初等行变换都是要用第一行的-k倍去消去其他行的第一个元素,接着再进一步化简,屡试不爽哦~)
接着保证首非零元都是1,并且保证首非零元所在“列”都为0即可,本例可处理为:
1 0 -1 0
0 1 2 0
0 0 0 1
这样就完成咯~希望对LZ有帮助
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2019-12-27 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.3亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式