求定积分过程 10

 我来答
高数线代编程狂
2019-04-13 · TA获得超过1.8万个赞
知道大有可为答主
回答量:1620
采纳率:86%
帮助的人:347万
展开全部
利用倍角公式降幂,cos²2x=1+ cos4x/2,替换后积分即可
bill8341
高粉答主

2019-04-13 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3677万
展开全部
2∫[0,pi/2](cos2x)^2dx
=2∫[0→π/2](cos4x+1)/2dx(降幂公式)
=∫[0→π/2](cos4x+1)dx
=∫[0→π/2]cos4xdx+∫[0→π/2]1dx
=(1/4sin4x)|[0→π/2]+x|[0→π/2]
=1/4sin2π-1/4sin0+(π/2)-0
=π/2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式