求线性微分方程 x'(t)=y(t)-x(t) y'(t)=3x(t)-3y(t) 并求出满足x(0)=y(0)=1/2 的特解

 我来答
敏全郑书
2020-01-13 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.4万
采纳率:27%
帮助的人:924万
展开全部
dy/dx=(dy/dt)/(dx/dt)=(3x(t)-3y(t))/(y(t)-x(t))=-3
y=-3x+C
代入x(0)=y(0)=1/2后
得C=2
所以y=-3x+2
一楼没做完整
用x=(2-y)/3代回x'=y-x
[(2-y)/3]'=y-(2-y)/3
-y'=3y-2+y
y'=2-4y
dy/dt=2-4y
dy/dt+4y=2
乘以积分因子e^(4t)
d(e^(4t)y)/dt=2e^(4t)
e^(4t)y=1/2
e^(4t)+C'
代入t=0,y=1/2
得C'=0
所以e^(4t)y=1/2
e^(4t)
y=1/2
带回x=(2-y)/3得x=1/2
即x=y=1/2,
x,y是常值函数1/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式