如图 二次函数Y=x2+bx+c的图像与X只有一个公共点P
二次函数y=x2+bx+c的图象与x轴只有一个公共点P,与y轴的交点为Q。,求这个二次函数的解析式。要快!二次函数y=x2+bx+c的图象与x轴只有一个公共点P,与y轴的...
二次函数y=x2+bx+c的图象与x轴只有一个公共点P,与y轴的交点为Q。,求这个二次函数的解析式。
要快!二次函数y=x2+bx+c的图象与x轴只有一个公共点P,与y轴的交点为Q。过点Q的直线y=2x+m与x轴交于点A,与这个二次函数的图象交于另一点B。若S△BPQ=3S△APQ,求这个二次函数的解析式。 详解 展开
要快!二次函数y=x2+bx+c的图象与x轴只有一个公共点P,与y轴的交点为Q。过点Q的直线y=2x+m与x轴交于点A,与这个二次函数的图象交于另一点B。若S△BPQ=3S△APQ,求这个二次函数的解析式。 详解 展开
2个回答
展开全部
与X轴只有一交点,则说明当x=-b/2时,y有最值-b²/4+c=0
点Q坐标为(0,c) c=b²/4
直线y=2x+m过点Q(0,c) 所以直线可写为y=2x+c
解方程组 y=2x+c ①
y=x²+bx+c ② 可得点B坐标(2-b,b²/4+4-2b)
因为S△BPQ=3S△APQ,即S△APB=4S△APQ,
所以B的纵坐标是Q的纵坐标的4倍,即
b²/4+4-2b=b² 解之得b=-4或4/3
因此二次函数为y=x²-4x+4或y=x²+4x/3+4/9
点Q坐标为(0,c) c=b²/4
直线y=2x+m过点Q(0,c) 所以直线可写为y=2x+c
解方程组 y=2x+c ①
y=x²+bx+c ② 可得点B坐标(2-b,b²/4+4-2b)
因为S△BPQ=3S△APQ,即S△APB=4S△APQ,
所以B的纵坐标是Q的纵坐标的4倍,即
b²/4+4-2b=b² 解之得b=-4或4/3
因此二次函数为y=x²-4x+4或y=x²+4x/3+4/9
东莞大凡
2024-08-07 广告
2024-08-07 广告
OpenCV标定板是东莞市大凡光学科技有限公司在相机标定中常用的工具。它通常由黑白格点按一定规则排列在平面上组成,如棋盘格或圆形格等。在相机标定时,将标定板置于不同位置和姿态下拍摄图像,利用OpenCV库中的函数检测标定板上的角点或圆心,进...
点击进入详情页
本回答由东莞大凡提供
展开全部
与X轴只有一交点,则说明当x=-b/2时,y有最值-b²/4+c=0
点Q坐标为(0,c) c=b²/4
直线y=2x+m过点Q(0,c) 所以直线可写为y=2x+c
解方程组 y=2x+c ①
y=x²+bx+c ② 可得点B坐标(2-b,b²/4+4-2b)
因为S△BPQ=3S△APQ,即S△APB=4S△APQ,
所以B的纵坐标是Q的纵坐标的4倍,即
b²/4+4-2b=b² 解之得b=-4或4/3
因此二次函数为y=x²-4x+4或y=x²+4x/3+4/9
点Q坐标为(0,c) c=b²/4
直线y=2x+m过点Q(0,c) 所以直线可写为y=2x+c
解方程组 y=2x+c ①
y=x²+bx+c ② 可得点B坐标(2-b,b²/4+4-2b)
因为S△BPQ=3S△APQ,即S△APB=4S△APQ,
所以B的纵坐标是Q的纵坐标的4倍,即
b²/4+4-2b=b² 解之得b=-4或4/3
因此二次函数为y=x²-4x+4或y=x²+4x/3+4/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询