求lim(x→0)(x²tan²x)/(1-cosx)²

 我来答
慎树花果琬
2019-12-31 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:1129万
展开全部
①1-cosx=2sin²(x/2)
tanx=sinx/cosx=2[sin(x/2)cos(x/2)]/cosx
将上式代入原式可得
原式=lim【x→0】
[x²cos(x/2)]/[cosxsin²(x/2)]
=lim【x→0】
[cos(x/2)/cosx]*[4(x/2)²/sin²(x/2)]
=4
其中利用极限lim
cos(x/2)=1
,
lim
cosx=1
,
重要极限lim
x/sinx=1,当x→0时
②也可利用等价无穷小代换,当x→0时有tanx~x,
1-cosx~0.5x²
所以原式=lim【x→0】
x^4/(0.5x²)²=4
③也可以利用洛比达法则求解!
不明白的可以追问,如果有帮助,请选为满意回答!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式