用待定系数法求二次函数的解析出方法规律(6种)

 我来答
向丹塞妍
2020-04-24 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:34%
帮助的人:862万
展开全部
一、三点型(一般式)
若已知二次函数图像上任意三点的坐标,则可以用标准式y=
ax2
+bx+c.
例1
已知二次函数图像经过(1,0)、(-1,-4)和(0,-3)三点,求这个二次函数解析式.
解:设二次函数的解析式为y=ax2+bx+c,由已知可得
,解之得
故所求二次函数解析式为y=x2+2x-3.
二、顶点型(顶点式)
若已知二次函数图像的顶点坐标或对称轴方程和函数的最大(小)值,则可以用顶点形式y=a(x-h)2+k.
例2
已知抛物线的顶点坐标为(2,3),且经过点(3,1),求其解析式.
解:设二次函数解析式为y=a(x-h)2+k,由条件得1=a(3-2)2+3.
解得a=-2.
所以,抛物线的解析式为y=-2(x-2)2+3,即:y=-2x2+8x-5.
三、交点型(两点式)
若已知二次函数图像与x轴的两交点坐标或两交点间的距离及对称轴,则可以用交点形式y=a(x-x1)·(x-x2).
例3
已知二次函数图像与x轴交于(-1,0)、(3,0)两点,且经过点(1,-5),求其解析式.
解:设二次函数解析式为y=a(x+1)(x-3),由条件得-5=a(1+1)(1-3).
解得a=.
故所求二次函数解析式为y=(x+1)(x-3),则y=x2—x—.
四、平移型
将二次函数图像平移,形状和开口方向、大小没有改变,发生变化的是顶点坐标.故可先将原函数解析式化成顶点形式,再按照“左加右减,上加下减”的法则,即可得出所求的抛物线的解析式.
例4
将抛物线y=x2+2x-3向左平移4个单位,再向下平移3个单位,求所得到的抛物线的解析式.
解:函数解析式可变为y=(x+1)2-4.
因向左平移4个单位,向下平移3
个单位,所求函数解析式为y=(
x+1+4)2-4-3,即y=x2+10x+18.
五、综合型
综合运用几何性质求二次解析式.
例5
如下图,二次函数y=ax2+bx+c的图像与x轴交于A、B两点,与y轴交于C点,若AC=20,BC=15,∠ABC=90°,求这个二次函数解析式.
解:在Rt△ABC中,
AB=
+
=25,
∵S△ABC=AC·BC=AB·OC,
∴OC===12.
∵AC2=AO·AB,
∴OA===16,
∴OB=9.
从而得A、B、C三点坐标分别为(-16,0)、(9,0)、(0,12).
于是,利用三点型可求得函数解析式为:y=-x2-x+12.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式