怎么证明矩阵可以相似对角化
1个回答
展开全部
首先实对称矩阵A,一定存在正交矩阵T,使得T^(-1)AT为对角阵,这是关于实对称矩阵的重要定理,证明书上都有.设B为对角阵,则B=T^(-1)AT,从而A=TBT^(-1),由A^2=A,得TBT^(-1)TBT^(-1)=TBT^(-1),即B^2=B,由于B为对角阵,因此可设B=diag{b1,b2,bn},则B^2=diag{b1^2,b2^2,bn^2},由B^2=B可知bi^2=bi,bi=0或1,即B=T^(-1)AT=diag{1,1,1,0,0,0}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询