展开全部
建立以A'A为Z轴,A'B'为X轴,垂直A'B'为Y轴的空间直角坐标系
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个法向量n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
对不起,我不知道别的方法
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个法向量n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
对不起,我不知道别的方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分别做ab1和a1b1的中点e和f,连接de、ef和c1f。所以dc1fe是平行四边形
因为d是cc1的中点,cd=c1d,又ac=a1c1,角acd=角b1c1d,所以ad=b1d
因此de垂直于ab1
因为dc1垂直于面a1b1c1,所以dc1垂直于c1f.因此dc1fe是矩形,
即de垂直于ef
ef、ab1属于面abb1a1
所以de垂直于面abb1a1
因为de属于面adb1
所以面adb1垂直于面abb1a1
(因为没法打出来数学符号,所以你在纸上写的时候把文字用符号表示一下就行了。加油哦!(*^__^*)
嘻嘻……)
因为d是cc1的中点,cd=c1d,又ac=a1c1,角acd=角b1c1d,所以ad=b1d
因此de垂直于ab1
因为dc1垂直于面a1b1c1,所以dc1垂直于c1f.因此dc1fe是矩形,
即de垂直于ef
ef、ab1属于面abb1a1
所以de垂直于面abb1a1
因为de属于面adb1
所以面adb1垂直于面abb1a1
(因为没法打出来数学符号,所以你在纸上写的时候把文字用符号表示一下就行了。加油哦!(*^__^*)
嘻嘻……)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
建立以A'A为Z轴,A'B'为X轴,垂直A'B'为Y轴的空间直角坐标系
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个法向量n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个法向量n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
建立以A'A为Z轴,A'B'为X轴,垂直A'B'为Y轴的
空间直角坐标系
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个
法向量
n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
空间直角坐标系
所以A(0,0,a)B'(a,0,0)C'(a/2,a/2,0)D(a/2,a/2,a/2)
所以C'B向量=(-a/2,a/2,0)
AD=(a/2,a/2,-a/2)
B'D=(-a/2,a/2,a/2)
求出平面AB'D的一个
法向量
n=(0,1,1)
所以点C'到平面AB'D距离为:C'B向量*n向量/n向量模=根号下2*a/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询