∫/(1+sinx+cosx)dx
1个回答
展开全部
设t=tan(x/2),则x=2arctant,sinx=2t/(1+t²),cosx=(1-t²)/(1+t²),dx=2dt/(1+t²)
故 ∫dx/(1+sinx+cosx)=∫[2dt/(1+t²)]/[1+2t/(1+t²)+(1-t²)/(1+t²)]
=∫[2dt/(1+t²)]/[2(1+t)/(1+t²)]
=∫dt/(1+t)
=ln│1+t│+C (C是积分常数)
=ln│1+tan(x/2)│+C.
故 ∫dx/(1+sinx+cosx)=∫[2dt/(1+t²)]/[1+2t/(1+t²)+(1-t²)/(1+t²)]
=∫[2dt/(1+t²)]/[2(1+t)/(1+t²)]
=∫dt/(1+t)
=ln│1+t│+C (C是积分常数)
=ln│1+tan(x/2)│+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询