请问这两道微分方程的题目怎么做?
1个回答
展开全部
12、y(x)=-1+x+2∫(0,x) (x-t)y(t)y'(t)dt=-1+x+2x∫(0,x) y(t)y'(t)dt-2∫(0,x) ty(t)y'(t)dt
两边求导,y'(x)=1+2∫(0,x) y(t)y'(t)dt+2xy(x)y'(x)-2xy(x)y'(x)=1+2∫(0,x) y(t)y'(t)dt
再次求导,y''(x)=2y(x)y'(x)=[y(x)^2]'
y'(x)=y(x)^2+C1,其中C1是任意常数
因为y(0)=-1,y'(0)=1,则将x=0带入上式,有1=(-1)^2+C1,得:C1=0
即y'(x)=y(x)^2
-y'(x)/y(x)^2=-1
[1/y(x)]'=-1
1/y(x)=-x+C2,其中C2是任意常数
将x=0带入上式,有1/(-1)=0+C2,得:C2=-1
即1/y(x)=-x-1
y(x)=-1/(x+1)
16、
(1)令y2=u(x)*y1(x)=u(x)*e^x是与y1线性无关的另一个特解,代入齐次方程
(u''+2u'+u)+(u'+u)x/(1-x)-u/(1-x)=0
u''+u'*[2+x/(1-x)]=0
u'=(x-1)e^(-x)
u=-xe^(-x)
所以y2=-x,y1=e^x是齐次方程的两个线性无关的特解
所以齐次方程通解为:y=c1*(-x)+c2*e^x,其中c1,c2是任意常数
接下来用常数变易法求解非齐次方程的通解
设非齐次方程的通解为:y=c1(x)*(-x)+c2(x)*e^x,
y'=c1'(x)*(-x)-c1(x)+c2'(x)*e^x+c2(x)*e^x
设c1'(x)*(-x)+c2'(x)*e^x=0,则y'=-c1(x)+c2(x)*e^x
y''=-c1'(x)+c2'(x)*e^x+c2(x)*e^x
将y'',y',y代入非齐次方程
[-c1'(x)+c2'(x)*e^x+c2(x)*e^x]+[-c1(x)+c2(x)*e^x]*x/(1-x)-[c1(x)*(-x)+c2(x)*e^x]*1/(1-x)=x-1
-c1'(x)+c2'(x)*e^x=x-1
将c1'(x)*(-x)+c2'(x)*e^x=0,-c1'(x)+c2'(x)*e^x=x-1两式联立,得:
c1'(x)=1,c2'(x)=xe^(-x)
c1(x)=x+C1,c2(x)=-(x+1)e^(-x)+C2,其中C1,C2是任意常数
则非齐次方程的通解为:y=(x+C1)*(-x)+[-(x+1)e^(-x)+C2]*e^x
y=C1*x+C2*e^x-(x^2+x+1)
(2)做法和(1)一样,你自己算下吧
两边求导,y'(x)=1+2∫(0,x) y(t)y'(t)dt+2xy(x)y'(x)-2xy(x)y'(x)=1+2∫(0,x) y(t)y'(t)dt
再次求导,y''(x)=2y(x)y'(x)=[y(x)^2]'
y'(x)=y(x)^2+C1,其中C1是任意常数
因为y(0)=-1,y'(0)=1,则将x=0带入上式,有1=(-1)^2+C1,得:C1=0
即y'(x)=y(x)^2
-y'(x)/y(x)^2=-1
[1/y(x)]'=-1
1/y(x)=-x+C2,其中C2是任意常数
将x=0带入上式,有1/(-1)=0+C2,得:C2=-1
即1/y(x)=-x-1
y(x)=-1/(x+1)
16、
(1)令y2=u(x)*y1(x)=u(x)*e^x是与y1线性无关的另一个特解,代入齐次方程
(u''+2u'+u)+(u'+u)x/(1-x)-u/(1-x)=0
u''+u'*[2+x/(1-x)]=0
u'=(x-1)e^(-x)
u=-xe^(-x)
所以y2=-x,y1=e^x是齐次方程的两个线性无关的特解
所以齐次方程通解为:y=c1*(-x)+c2*e^x,其中c1,c2是任意常数
接下来用常数变易法求解非齐次方程的通解
设非齐次方程的通解为:y=c1(x)*(-x)+c2(x)*e^x,
y'=c1'(x)*(-x)-c1(x)+c2'(x)*e^x+c2(x)*e^x
设c1'(x)*(-x)+c2'(x)*e^x=0,则y'=-c1(x)+c2(x)*e^x
y''=-c1'(x)+c2'(x)*e^x+c2(x)*e^x
将y'',y',y代入非齐次方程
[-c1'(x)+c2'(x)*e^x+c2(x)*e^x]+[-c1(x)+c2(x)*e^x]*x/(1-x)-[c1(x)*(-x)+c2(x)*e^x]*1/(1-x)=x-1
-c1'(x)+c2'(x)*e^x=x-1
将c1'(x)*(-x)+c2'(x)*e^x=0,-c1'(x)+c2'(x)*e^x=x-1两式联立,得:
c1'(x)=1,c2'(x)=xe^(-x)
c1(x)=x+C1,c2(x)=-(x+1)e^(-x)+C2,其中C1,C2是任意常数
则非齐次方程的通解为:y=(x+C1)*(-x)+[-(x+1)e^(-x)+C2]*e^x
y=C1*x+C2*e^x-(x^2+x+1)
(2)做法和(1)一样,你自己算下吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询