大数据专业学什么编程
大数据前景是很不错的,像大数据这样的专业还是一线城市比较好,师资力量跟得上、就业的薪资也是可观的,学习大数据可以按照路线图的顺序,
0基础学习Java是没有问题的,关键是找到靠谱的Java培训机构,你可以深度了解机构的口碑情况,问问周围知道这家机构的人,除了口碑再了解机构的以下几方面:
1. 师资力量雄厚
要想有1+1>2的实际效果,很关键的一点是师资队伍,你接下来无论是找个工作还是工作中出任哪些的人物角色,都越来越爱你本身的技术专业java技术性,也许的技术专业java技术性则绝大多数来自你的技术专业java教师,一个好的java培训机构必须具备雄厚的师资力量。
2. 就业保障完善
实现1+1>2效果的关键在于能够为你提供良好的发展平台,即能够为你提供良好的就业保障,让学员能够学到实在实在的知识,并向java学员提供一对一的就业指导,确保学员找到自己的心理工作。
3. 学费性价比高
一个好的Java培训机构肯定能给你带来1+1>2的效果,如果你在一个由专业的Java教师领导并由Java培训机构自己提供的平台上工作,你将获得比以往更多的投资。
希望你早日学有所成。
大数据需要的语言
Java
java可以说是大数据最基础的编程语言,据我这些年的经验,我接触的很大一部分的大数据开发都是从Jave Web开发转岗过来的(当然也不是绝对我甚至见过产品转岗大数据开发的,逆了个天)。
一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景
二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码。
说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决问题的时候你会发现源码真香。
Scala
scala和java很相似都是在jvm运行的语言,在开发过程中是可以无缝互相调用的。Scala在大数据领域的影响力大部分都是来自社区中的明星Spark和kafka,这两个东西大家应该都知道(后面我会有文章多维度介绍它们),它们的强势发展直接带动了Scala在这个领域的流行。
Python和Shell
shell应该不用过多的介绍非常的常用,属于程序猿必备的通用技能。python更多的是用在数据挖掘领域以及写一些复杂的且shell难以实现的日常脚本。
广告 您可能关注的内容 |