信号与系统 复数信号 物理意义
我看的是奥本海姆的《信号与系统》,P185的例3.1,有两个信号的例子,第一个为复信号x(t)=e^j2t,第二个为实信号x(t)=cos4t+cos7t,我的感觉是感觉...
我看的是奥本海姆的《信号与系统》,P185的例3.1,有两个信号的例子,第一个为复信号x(t)=e^j2t,第二个为实信号x(t)=cos4t+cos7t,我的感觉是感觉现实中的信号都应该是实数的,比如,弹簧振子振动块位移与时间的关系 ,就是x(t)=sinwt,再复杂一点的信号或许会包含很多不同的频率成分,比如方波信号,含有丰富的频率成分,但不管这些信号是什么,我的理解是它们都应该是以实数方式出现的,我很不明白当一个信号以复数方式出现时,应该怎样理解他的物理意义。 我明白,当信号做傅里叶变换成为频谱时,在频率域中,肯定会有实部和虚部,实部为幅度信息,虚部为相位信息,这个物理意义很明显。我就是不明白,不做傅里叶变换,仅仅就在时间域中,那个复信号应该怎么理解,感觉虚部的存在很影响我对信号的理解,我很难想象出这个物理意义。 交流电路中,当电信号以“相量”形式表示时,会出现复数的情况,难道这个东西就要那么去理解吗?但这还是有问题,因为电信号的相量表示法也仅仅是一种表示而已,真正的电信号其实也是一些不同频率是信号的线性组合,要分析其频谱的话,也不会用其相量来做傅里叶变换,而是时间域的信号(最终会用实信号表示),所以我不明白,为什么会有复信号。 希望高手高手高高手们能够帮我解开这个疑惑,真的很好奇啊,期待着大家的回复,现在这里谢过了。我的QQ:304764880
展开
2个回答
展开全部
刚刚写了一大堆,竟然发送失败!就发到这里吧!
1.实际得到了这种双边频谱,e^jwt与e^-jwt的幅度正好是cos(wt)幅度的一半[幅度谱是偶函数];即Acos(wt)=0.5A[e^jwt+e^-jwt];合成即用欧拉公式,不是平方后求和。
2.正负频率分量的能量
各占
实际
频率分量的一半。【你再看看傅里叶变换的帕斯瓦尔能量守恒定理,就知道所有w<0的分量和所有w>0的分量的能量是相等的,能量谱是偶函数】
3.实际中不应该分开来看,而是合成来看,只谈某w>0的频率分量是多大,不谈w<0
我也说两句:
1.之所以引入复信号[有虚部],并不是因为实际存在复信号;如同δ函数一样,实际并不存在,但是作为数学分析的角度,引入后能方便分析信号。而傅里叶级数的指数形式和傅里叶变换,都是把信号分解为e^jwt的组合。把这个数学方法用在实信号,当然是正确的,于是有傅里叶级数的三角形式。实际中实信号的频率分量的频率都是非负的,在数学形式上需要一正一负的e^jwt才得到实的正弦分量,所以实信号的频谱总是双边的频谱,实信号的频谱的幅度是偶的,相位是奇函数。总之,用e^jwt后,数学分析最简单。把实信号进行变换分解为cos,sin分量的积分变换是需要2个计算公式,而把信号分解为e^jwt的只要一个公式。
说到这里你应该明白
为什么引入复信号了吧?另外e^jwt作用在LTI系统上产生的零状态响应是特别的简单,在这个基础上就可以得出
coswt作用在LTI
实
系统上产生的零状态响应了。
2.交流电路中,虽然有相量,表面看是复数,但是他却表示一个正弦信号;如90<45°,90表示正弦的振幅,45表示相位,即表示90cos(wt+45°),这点可以理解吧?
那么为什么可以这样表示呢?首先理解:90cos(wt+45°)是实信号,电路也是实系统[实际中只有实信号和实系统],于是电流或电压响应也是实的;于是90cos(wt+45°)作为复信号
90e^(wt+45°)的实部,90e^j(wt+45°)经过系统后的响应为
90e^j(wt+45°)H(jw);
还是个复信号,但是响应也是实的,所以他等于
90e^j(wt+45°)H(jw)的实部。假设90e^j(wt+45°)是电流,即90cos(wt+45°),他经过1+jw的阻抗[相当于系统频率响应],那么,设w=1;该阻抗上的电压是:
90e^j(t+45°)H(j1)=...=90√2e^j(t+45°+45°),写成相量形式为90√2<90°,转换成90√2cos(t+90°),而这个正是响应的实部呀。
也就是说,相量A<θ是用来表示Acos(wt+θ),并不是复信号,....
1.实际得到了这种双边频谱,e^jwt与e^-jwt的幅度正好是cos(wt)幅度的一半[幅度谱是偶函数];即Acos(wt)=0.5A[e^jwt+e^-jwt];合成即用欧拉公式,不是平方后求和。
2.正负频率分量的能量
各占
实际
频率分量的一半。【你再看看傅里叶变换的帕斯瓦尔能量守恒定理,就知道所有w<0的分量和所有w>0的分量的能量是相等的,能量谱是偶函数】
3.实际中不应该分开来看,而是合成来看,只谈某w>0的频率分量是多大,不谈w<0
我也说两句:
1.之所以引入复信号[有虚部],并不是因为实际存在复信号;如同δ函数一样,实际并不存在,但是作为数学分析的角度,引入后能方便分析信号。而傅里叶级数的指数形式和傅里叶变换,都是把信号分解为e^jwt的组合。把这个数学方法用在实信号,当然是正确的,于是有傅里叶级数的三角形式。实际中实信号的频率分量的频率都是非负的,在数学形式上需要一正一负的e^jwt才得到实的正弦分量,所以实信号的频谱总是双边的频谱,实信号的频谱的幅度是偶的,相位是奇函数。总之,用e^jwt后,数学分析最简单。把实信号进行变换分解为cos,sin分量的积分变换是需要2个计算公式,而把信号分解为e^jwt的只要一个公式。
说到这里你应该明白
为什么引入复信号了吧?另外e^jwt作用在LTI系统上产生的零状态响应是特别的简单,在这个基础上就可以得出
coswt作用在LTI
实
系统上产生的零状态响应了。
2.交流电路中,虽然有相量,表面看是复数,但是他却表示一个正弦信号;如90<45°,90表示正弦的振幅,45表示相位,即表示90cos(wt+45°),这点可以理解吧?
那么为什么可以这样表示呢?首先理解:90cos(wt+45°)是实信号,电路也是实系统[实际中只有实信号和实系统],于是电流或电压响应也是实的;于是90cos(wt+45°)作为复信号
90e^(wt+45°)的实部,90e^j(wt+45°)经过系统后的响应为
90e^j(wt+45°)H(jw);
还是个复信号,但是响应也是实的,所以他等于
90e^j(wt+45°)H(jw)的实部。假设90e^j(wt+45°)是电流,即90cos(wt+45°),他经过1+jw的阻抗[相当于系统频率响应],那么,设w=1;该阻抗上的电压是:
90e^j(t+45°)H(j1)=...=90√2e^j(t+45°+45°),写成相量形式为90√2<90°,转换成90√2cos(t+90°),而这个正是响应的实部呀。
也就是说,相量A<θ是用来表示Acos(wt+θ),并不是复信号,....
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |