向量的叉积是怎样算出来的?
1个回答
展开全部
右手除姆指外的四指合并,姆指与其他四指垂直,四指由A向量的方向握向B向量的方向,这时姆指的指向就是A,B向量向量积的方向。就是说,AB向量积的方向垂直于AB向量确定的平面。
几何意义:
叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
扩展资料
高维情形——
七维向量的叉积可以通过八元数得到,与上述的四元数方法相同。
七维叉积具有与三维叉积相似的性质:
双线性性:x×(ay+bz)=ax×y+bx×z;(ay+bz)×x=ay×x+bz×x;
反交换律:x×y+y×x=0;
同时与x和y垂直:x·(x×y)=y·(x×y)=0;
拉格朗日恒等式:|x×y|²=|x|²|y|²-(x·y)²;
不同于三维情形,它并不满足雅可比恒等式:x×(y×z)+y×(z×x)+z×(x×y)≠0。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询