指出函数 的不连续点

 我来答
简康阮高昂
2020-05-20 · TA获得超过3860个赞
知道大有可为答主
回答量:3076
采纳率:28%
帮助的人:167万
展开全部
答案: 解析: 由连续函数的定义知道,函数f(x)在点x0处连续,必须同时满足(1)函数f(x)在x=x0处有定义,   (2)这三个条件,否则函数f(x)在x0处不连续,也就是x0为函数f(x)的不连续点.   由于初等函数在定义域内连续,因此初等函数的不连续点一定不在定义域内.   函数的定义域为{x|x≠0且x≠1}   ∴ x=0和x=1是函数的不连续点. 提示: 由基本初等函数(高中阶段所学过的幂函数、指数函数、对数函数、三角函数)和常数经过有限次四则运算和有限次函数的复合而得到的函数,统称为初等函数.初等函数在定义域内都是连续的,所以初等函数的不连续点一定在定义域之外.   函数与是两个不同的函数,前者的定义域是{x|x≠1且x≠2},后者的定义域是{x|x≠2},因此,不可将原来函数表达式约分化简后再求不连续点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式