幂级数的收敛半径是什么?

 我来答
八卦娱乐分享
高能答主

2021-11-24 · 开开心心聊八卦娱乐。
八卦娱乐分享
采纳数:1010 获赞数:72025

向TA提问 私信TA
展开全部

收敛半径r是一个非负的实数或无穷大,使得在|z-a|<r时幂级数收敛,在|z-a|>r时幂级数发散。

当z和a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线

幂函数的性质:

正值性质。

当α>0时,幂函数y=xα有下列性质:

a、图像都经过点(1,1)(0,0)。

b、函数的图像在区间[0,+∞)上是增函数

c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。

负值性质。

当α<0时,幂函数y=xα有下列性质:

a、图像都通过点(1,1)。

b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式