无界函数是否一定发散?

 我来答
汽车解说员小达人
高能答主

2021-11-24 · 用力答题,不用力生活
知道小有建树答主
回答量:1104
采纳率:100%
帮助的人:42.1万
展开全部

无界是数列发散的充分但不必要条件。也就是说如果数列无界,那么数列必定发散,比如an=n²,是无界的,那它必是发散的;但是即使数列有界,也有可能是发散的,比如an=sin(n),是有界的,但它也是发散的。

无界数列一定发散,数列有界是数列存在极限的必要条件;但发散的数列不一定无解(比如{(-1)^n})。

发散数列就是当n趋近正无穷时,数列an总是不能接近某一个具体的数值,换句话说就是数列an没有极限,这样的数列就是发散数列。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。

每一种有意义的级数求和法表面上都有很重的主观定义色彩,但在数学内部多半都可找到它的深刻背景,像阿贝尔求和法,源于关于泰勒级数的阿贝尔极限定理;而算术平均求和法,就与傅里叶级数部分和的性态有关。

级数求和主要是针对发散级数提出来的。每一种求和法都能使某些发散级数有和,同时又希望按照它,所有的收敛级数都是可和的,并且所求出的和与其柯西和相等,这样的级数求和方法就称为正则的。级数的正则求和法是收敛性(柯西和)概念的直接推广,在调和分析、通近论等数学学科中有很多应用。



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式