导数公式推导过程是什么?

 我来答
小枫带你看生活
高能答主

2021-11-29 · 享受生活中的美好瞬间!
小枫带你看生活
采纳数:994 获赞数:69771

向TA提问 私信TA
展开全部

导数公式推导过程如下:

y=a^x,△y=a^(x+△x)-a^x=a^x(a^△x-1),△y/△x=a^x(a^△x-1)/△x。

如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。

所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β。

显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

常用导数:

y = C(C为常数) , y' = 0。

y=xn, y' = nxn-1。

y = ax, y' = lna*ax。

y = ex, y' = ex。

y = logax , y' = 1 / (x*lna)。

y = lnx , y' = 1/x。

y = sinx , y' = cosx。

y = cosx , y' = -sinx。

y = tanx , y' = 1/cos2x = sec2x。

y = cotx , y' = -1/sin2x= -csc2x。

y = arcsinx , y' = 1 / √(1-x2)。

y = arccosx , y' = - 1 /√(1-x2)。

y = arctanx , y' = 1/(1+x2)。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
快捷生活空间站
高能答主

2021-12-02 · 生活丰富多彩,请热爱生活。
快捷生活空间站
采纳数:586 获赞数:13846

向TA提问 私信TA
展开全部

导数公式推导过程:

1、显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,△y=c-c=0,lim△x→0△y/△x=0。

2、这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^x y=e^x和y=lnx y=1/x这两个结果后能用复合函数的求导给予证明。

⒊、y=a^x,y=a^(x+△x)-a^x=a^x(a^△x-1),y/△x=a^x(a^△x-1)/△x。

如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。

所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β。

显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。

可以知道,当a=e时有y=e^x y=e^x。

4、y=logax,△y=loga(x+△x)-logax=loga(x+△x)/x=loga/x,△y/△x=loga/x。

因为当△x→0时,△x/x趋向于0而x/△x趋向于∞,所以lim△x→0loga(1+△x/x)^(x/△x)=logae,所以有lim△x→0△y/△x=logae/x,可以知道,当a=e时有y=lnx y'=1/x。

这时可以进行y=x^n y=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx。

所以y'=e^nlnx·(nlnx)=x^n/x=nx^(n-1)。

5、y=sinx。

△y=sin(x+△x)-sinx=2cos(x+△x/2)sin(△x/2)。

△y/△x=2cos(x+△x/2)sin(△x/2)/△x=cos(x+△x/2)sin(△x/2)/(△x/2)。

所以lim△x→0△y/△x=lim△x→0cos(x+△x/2)lim△x→0sin(△x/2)/(△x/2)=cosx。

6、类似地,可以导出y=cosx y=-sinx。

7、y=tanx=sinx/cosx。

y=/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x。

8、y=cotx=cosx/sinx,y=/sin^2x=-1/sin^2x。

9、y=arcsinx,x=siny,x=cosy,y=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2。

10、y=arccosx,x=cosy,x=siny,y=1/x=1/siny=-1/√1-cos^2y=-1/√1-x^2。

11、y=arctanx,x=tany,x=1/cos^2y,y=1/x=cos^2y=1/sec^2y=1/1+tan^2y=1/1+x^2。

12、y=arccotx,x=coty,x=-1/sin^2y。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
情感大师张688
2023-07-15 · 超过64用户采纳过TA的回答
知道小有建树答主
回答量:299
采纳率:100%
帮助的人:4.2万
展开全部
导数公式的推导过程涉及到微积分的基本概念和运算规则。下面是一些常见的导数公式及其推导过程:
1. 常数函数的导数:对于任意常数c,导数为0。
推导过程:根据导数的定义,我们有f'(x) = lim(h->0) [f(x+h) - f(x)]/h。对于常数函数f(x) = c,我们有f(x+h) = c,因此[f(x+h) - f(x)]/h = 0/h = 0。取极限h->0,得到f'(x) = 0。
2. 幂函数的导数:对于指数函数f(x) = x^n,其中n是任意实数,导数为f'(x) = nx^(n-1)。
推导过程:根据导数的定义,我们有f'(x) = lim(h->0) [f(x+h) - f(x)]/h。将f(x) = x^n代入,得到[f(x+h) - f(x)]/h = [(x+h)^n - x^n]/h。我们可以利用二项式展开来展开(x+h)^n,并对其中的高次项进行化简,然后取极限h->0,最终得到f'(x) = nx^(n-1)。
3. 指数函数的导数:对于指数函数f(x) = e^x,导数为f'(x) = e^x。
推导过程:可以使用极限或泰勒级数展开来推导这个结论。这里使用泰勒级数展开:e^x = 1 + x + (x^2)/2! + (x^3)/3! + ...。我们可以看到,每一项的导数都是它本身,所以对于e^x来说,每一项的导数都是它本身。因此,f'(x) = e^x。
这些是一些常见的导数公式及其推导过程。需要注意的是,导数公式的推导过程可能更加复杂,涉及到更多的数学技巧和推理。对于更复杂的函数,可能需要使用更高级的导数规则和技巧来进行推导。希望对您有所帮助!如有其他问题,我将很乐意为您解答。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活达人唐鲜生
2023-07-17 · TA获得超过123个赞
知道小有建树答主
回答量:1789
采纳率:93%
帮助的人:76.9万
展开全部
导数公式推导的过程可以使用极限的定义来进行。下面是推导导数公式的一般步骤:

1. 首先,我们需要给出一个函数 y = f(x),并定义一个点 x0。

2. 然后,我们计算函数在点 x0 处导数的定义极限,即:
f'(x0) = lim(h->0) [f(x0 + h) - f(x0)] / h

3. 将函数 f(x) 展开成泰勒级数,保留低阶项(h的一次幂):
f(x0 + h) = f(x0) + f'(x0) * h + O(h^2)

4. 将展开式代入定义极限中:
f'(x0) = lim(h->0) [f(x0) + f'(x0) * h + O(h^2) - f(x0)] / h
= lim(h->0) f'(x0) + O(h) / h
= lim(h->0) f'(x0) + O(1)

5. 注意到 O(1) 是一个与 h 无关的常数,所以可以去掉 O(1):
f'(x0) = lim(h->0) f'(x0) + O(1)
= f'(x0)

通过以上步骤,我们推导出了函数 f(x) 在点 x0 处的导数应该等于 f'(x0)。根据这个方法,我们可以推导出各种导数公式,包括常见函数的导数公式以及导数的运算法则。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式