第二类曲面积分是什么?

 我来答
猫头鹰教育知识分享
高能答主

2021-11-25 · 学而不厌,诲人不倦
猫头鹰教育知识分享
采纳数:59 获赞数:3033

向TA提问 私信TA
展开全部

第二型曲面积分是关于在坐标面投影的曲面积分,其物理背景是流量的计算问题。

第二型曲线积分与积分路径有关,第二型曲面积分同样依赖于曲面的取向,第二型曲面积分与曲面的侧有关,如果改变曲面的侧(即法向量从指向某一侧改变为指另一侧),显然曲面积分要改变符号,注意在上述记号中未指明哪侧,必须另外指出,第二型曲面积分有类似于第二型曲线积分的一些性质。

设Σ为光滑曲面,函数f(x,y,z)在Σ上有定义,把Σ任意地分成n个小曲面Si,其面积设为ΔSi,在每个小曲面Si上任取一点(Xi,Yi,Zi)作乘积f(Xi,Yi,Zi)ΔSi,并求和Σf(Xi,Yi,Zi)ΔSi,记λ=max(ΔSi的直径),若Σf(Xi,Yi,Zi)ΔSi当λ→0时的极限存在。

且极限值与Σ的分法及取点(Xi,Yi,Zi)无关,则称极限值为f(x,y,z)在Σ上对面积的曲面积分,也叫做第一类曲面积分。即为∫∫f(x,y,z)dS;其中f(x,y,z)叫做被积函数,Σ叫做积分曲面,dS叫做面积微元。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式