3个回答
展开全部
解:设等差数列的首项为a1,等差是d。a2=a1+d,a4=a1+3d,即a1+3d=8,即a1=8-3d ①
又由于a1,a3,a7为等比数列,其中a3=a1+2d,a7=a1+6d,有:
(a1+2d)/a1=(a1+6d)/(a1+2d)
将①式代入上式: (8-3d+2d)/(8-3d)=(8-3d+6d)/(8-3d+2d),即(8-d)/(8-3d)=(8+3d)/(8-d)
64-16d+d^2=64-9d^2,即10d^2-16d=0
2d(5d-8)=0,所以d=8/5,a1=8-(24/5)=16/5
所以,an=a1+(n-1)d=(16/5)+(8/5)(n-1)
=(8/5)(n+1)
又由于a1,a3,a7为等比数列,其中a3=a1+2d,a7=a1+6d,有:
(a1+2d)/a1=(a1+6d)/(a1+2d)
将①式代入上式: (8-3d+2d)/(8-3d)=(8-3d+6d)/(8-3d+2d),即(8-d)/(8-3d)=(8+3d)/(8-d)
64-16d+d^2=64-9d^2,即10d^2-16d=0
2d(5d-8)=0,所以d=8/5,a1=8-(24/5)=16/5
所以,an=a1+(n-1)d=(16/5)+(8/5)(n-1)
=(8/5)(n+1)
展开全部
a2+a4=2a3=8
a3=4,a1a7=(a3)²=64
a1(a1+6d)=64,又a3=a1+2d=4
联立求a1与d
a3=4,a1a7=(a3)²=64
a1(a1+6d)=64,又a3=a1+2d=4
联立求a1与d
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-08-20 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询