mathematica解方程
Solve[{x==RCos[alpha]-RCos[alpha+beta],y==RSin[alpha]-RSin[alpha+beta]},{alpha,beta}]...
Solve[{x == R Cos[alpha] - R Cos[alpha + beta], y == R Sin[alpha] - R Sin[alpha + beta]}, {alpha, beta}]
得不到任何结果。这是为什么呢?
怎么化简 展开
得不到任何结果。这是为什么呢?
怎么化简 展开
2个回答
展开全部
我怎么有结果啊——
{{beta -> -ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}}
{{beta -> -ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta -> -ArcCos[(
2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 - Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> -ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}, {beta ->
ArcCos[(2 R^2 - x^2 - y^2)/(2 R^2)],
alpha -> ArcCos[(R x^3 + R x y^2 + Sqrt[
4 R^4 x^2 y^2 - R^2 x^4 y^2 + 4 R^4 y^4 - 2 R^2 x^2 y^4 -
R^2 y^6])/(2 (R^2 x^2 + R^2 y^2))]}}
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询