已知非零向量ab满足|a-b|=|a+b|=c|b| 则向量a-b'与a+b的夹角最大值是 c大于等于2

 我来答
户如乐9318
2022-07-02 · TA获得超过6679个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
|a+b|=|a-b|的话,说明:a·b=0即a⊥b,故:=π/2而:|a+b|^2=c^2|b|^2,即:|a|^2=(c^2-1)|b|^2(a+b)·(a-b)=|a|^-|b|^2=(c^2-2)|b|^2|a-b|^2=|a+b|^2=|a|^2+|b|^2=c^2|b|^2故:cos=(a+b)·(a-b)/(|a+b|*|a-b|)=(c^2-2...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式