高中数学数列求和的七种方法

 我来答
科创17
2022-07-25 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部

  数列求和的七种 方法 :倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。下面是我给大家带来的数列求和的七种方法,希望能够帮助到大家!

  高中数学数列求和的七种方法

  1、倒序相加法

  倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。

  2、分组求和法

  分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。

  3、错位相减法

  错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。

  4、裂项相消法

  裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

  5、乘公比错项相减(等差×等比)

  这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。

  6、公式法

  对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

  7、迭加法

  主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。

相关 文章 :

1. 高中数学无穷递降等比数列求和公式

2. 高中数学学习方法和技巧是什么

3. 高中数学常考题型答题技巧与方法及顺口溜

4. 2019年秋季高中数学新教材变化之处和12个答题模板

5. 高一数学的学习方法及特点

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式