判断微分方程是否线性?

 我来答
五百学长
高能答主

2022-01-11 · 最想被夸「你懂的真多」
知道小有建树答主
回答量:3972
采纳率:100%
帮助的人:67.1万
展开全部

大致有三个条件:

①未知函数及其各阶导数都是一次幂。

②未知函数及各阶导数的系数只能含有自变量或常数 这在后面一阶线性微分方程中也涉及到了。dy/dx=-p(x)y十Q(x),其中p(x)就是未知函数含自变量的系数。

③不能出现未知函数及各阶导数的复合函数形式。如sinxdx=cosydy,出现了cosy,为复合函数,所以不是线性微分方程。

微分方程是数学方程,用来描述某一类函数与其导数之间的关系,在初等数学的代数方程里,其解是常数值。

微分方程可分为常微分方程及偏微分方程。它在化学、工程学、经济学和人口统计等领域应用广泛。

线性及非线性:

常微分方程及偏微分方程都可以分为线性及非线性二类。

若微分方程中没有出现自变数及微分项的平方或其他乘积项,也没有出现应变数及其微分项的乘积,此微分方程为线性微分方程,否则即为非线性微分方程。

齐次线性微分方程是线性微分方程中更细的分类,微分方程的解乘上一系数或是与另一个解相加后的结果仍为微分方程的解。

若线性微分方程的系数均为常数,则为常系数线性微分方程。常系数线性微分方程可以利用拉氏转换转换为代数方程,因此简化求解的过程。

针对非线性的微分方程,只有相当少数的方法可以求得微分方程的解析解,而且这些方法需要微分方程有特别的对称性。长时间时非线性微分方程可能会出现非常复杂的特性,也可能会有混沌现象

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式