五、函数微分

 我来答
科创17
2022-06-24 · TA获得超过5911个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:176万
展开全部

微分和导数有密切关系,我们回顾x0处导数为:

微分的形式为:

表示函数在x0点处,△x的微分,可见导数表示“增长率”的概念,微分表示“增长量的概念,这里△y≈dy实际是把一个无穷小量舍掉了(△y=A△x+o(△x))。
函数在x0有微分充分必要条件是: 函数在x0处可导。
从坐标系上看,△y是函数f(x)的增量,dy是函数在x0切线的增量,当△x->0时

注意上面积和商的公式。

由前面的定义我们知道:

即:

利用这个公式,当f(x0+△x)形式比较复杂时,可以用等号后面的式子计算。
(案例可见课本P117页例8)
上式,当x0=0时变为:(△x就是x)

其实上式就是泰勒公式在0点处把高阶项去掉的形式,利用这个公式可以求一些复杂方程式得近似解,如:

PS:上满式子也很像等价无穷小量。

我们知道,受测量仪器、条件和方法的制约,测试都是有误差的,我们先来看下 绝对误差和相对误差的概念:
绝对误差:|A-a|
相对误差:|A-a|/|a|
绝对误差限δ:|A-a|<δ
相对误差限:δ/|a|

由微分的定义可以知:

上式左边就是绝对误差,右边就是因变量的绝对误差限△y,△x就是自变量的绝对误差限。
(课本P119页例10)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式