函数有界说明什么
2个回答
展开全部
函数有界,从几何意义看就是图形被框定在两条平行于x轴的直线之间,不会跑出去;从代数意义看,就是函数值不会趋于正无穷大,也不会趋于负无穷大;当时并不意味着有极限,比如y=sinx,被框定在y=±1这两条直线之间,x→∞时,sinx游走于[-1,+1]之间.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
一般来说,连续函数在闭区间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
sinx,cosx,sin(1/x),cos(1/x),arcsinx,arccosx,arctanx,arccotx是常见的有界函数。
函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。
一般来说,连续函数在闭区间具有有界性。例如:y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
sinx,cosx,sin(1/x),cos(1/x),arcsinx,arccosx,arctanx,arccotx是常见的有界函数。
函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询