设A为n阶矩阵,r(A)=1,求证:(1)A=(a1 a2 .an)(列向量)*(b1,b2.bn ) (2) A^2=kA

 我来答
舒适还明净的海鸥i
2022-06-17 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70万
展开全部
证明:(1) 因为r(A)=1
所以 A 有一个非零列向量α,且其余列向量都是α的倍数
(事实上,α是A的列向量组的一个极大无关组)
记α=(a1,a2,...,an)'
则 A = (b1α,b2α,...,bnα) 某个ki=1.
= α(b1,b2,...,bn)
记 β = (b1,b2,...,bn)'
则 A = αβ'.
(2)
所以 A^2 = (αβ')(αβ')=α(β'α)β'=(β'α)αβ'=(β'α)A.
令 k = β'α
则 A^2=kA.
注:β'α 是两个向量的内积,是一个数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式