源码级解读如何解决Spark-sql读取hive分区表执行效率低问题

 我来答
天罗网17
2022-07-11 · TA获得超过6200个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.7万
展开全部

问题描述

在开发过程中使用spark去读取hive分区表的过程中(或者使用hive on spark、nodepad开发工具),部分开发人员未注意添加分区属性过滤导致在执行过程中加载了全量数据,引起任务执行效率低、磁盘IO大量损耗等问题。

解决办法

1、自定义规则CheckPartitionTable类,实现Rule,通过以下方式创建SparkSession。

2、自定义规则CheckPartitionTable类,实现Rule,将规则类追加至Optimizer.batches: Seq[Batch]中,如下。

规则内容实现

1、CheckPartitionTable规则执行类,需要通过引入sparkSession从而获取到引入conf;需要继承Rule[LogicalPlan];

2、通过splitPredicates方法,分离分区谓词,得到分区谓词表达式。在sql解析过程中将谓词解析为TreeNode,此处采用递归的方式获取分区谓词。

3、判断是否是分区表,且是否添加分区字段。

4、实现Rule的apply方法

大数据和云计算的关系

大数据JUC面试题

大数据之Kafka集群部署

大数据logstsh架构

大数据技术kafka的零拷贝

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式