如何理解同角三角函数基本关系?
2个回答
展开全部
同角三角函数的基本关系如下:
(1)平方关系:sin2α+cos2α=1。
(2)商数关系:=tanα。
同角三角函数关系式的常用变形:
(sinα±cosα)2=1±2sinαcosα;sinα=tanα·cosα。
诱导公式的记忆口诀:“奇变偶不变,符号看象限”,其中的奇、偶是指的奇数倍和偶数倍,变与不变指函数名称的变化。
在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
应用诱导公式时应注意的问题:
(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负号—脱周期—化锐角.特别注意函数名称和符号的确定。
(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号。
(3)注意求值与化简后的结果要尽可能有理化、整式化。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询