可积一定有界吗

 我来答
天罗网17
2022-06-11 · TA获得超过6162个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:71.8万
展开全部

可积一定有界。可积分,说明积分对象必然存在一个界,这个很通俗啦。而对于广义积分,同样适合,广义积分虽然积分区间是无穷的,不过那个面积的大小却是有限的,所谓的界,可以理解为面积,而不是区间长度。

可积一定有界吗

在一元微分学里面,可微与可导是等价的处于同样的地位,但是在多元微分学里面,可微强于可导(可偏导);同样在一元微分学里面,可微(可导)均可推出连续,但是在多元微分学里面,可微可推出连续。

可偏导并不能保证连续,需要偏导有界才能保证连续性。剩下的有界与可积是相互联系的,Riemann可积函数类的第一个性质就是有界,当然如果对广义积分来说有界就不是必要的了。而连续函数必Riemann可积,因此连续强于可积性。

总的来说,一元微积分里面,可积<连续<可微=可导,而可积必有界,对连续函数而言,需要在一定条件下才是有界的(如闭区间上的连续)。多元微积分里面,积分有多种,剩下的连续、可微、可导满足:可微必连续、可导;连续可偏导必可微;偏导有界必连续。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式