三角形中位线定理和性质

 我来答
新科技17
2022-07-23 · TA获得超过5907个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.1万
展开全部

三角形中位线定理是三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。下面整理了三角形中位线定理和性质,供大家参考。

三角形中位线定理

三角形中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。

证明:已知△ABC中,D,E分别是AB,AC两边中点。求证DE平行于BC且等于BC/2

过C作AB的平行线交DE的延长线于G点。

∵CG∥AD

∴∠A=∠ACG

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)

∴△ADE≌△CGE (A.S.A)

∴AD=CG(全等三角形对应边相等)

∵D为AB中点

∴AD=BD

∴BD=CG

又∵BD∥CG

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)

∴DG∥BC且DG=BC

∴DE=DG/2=BC/2

∴三角形的中位线定理成立

中线性质

设⊿ABC的角A、B、C的对边分别为a、b、c。

1、三角形的三条中线都在三角形内。

2、三角形中线长:

ma=(1/2)√2b^2+2c^2-a^2;

mb=(1/2)√2c²+2a²-b² ;

mc=(1/2)√2a²+2b²-c² 。

(ma,mb,mc分别为角A,B,C所对的中线长)

3、三角形的三条中线交于一点,该点叫做三角形的重心。

4、直角三角形斜边上的中线等于斜边的一半。

5、三角形中线组成的三角形面积等于这个三角形面积的3/4。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式