证明:n为任意正整数时,n(n-1)(2n-1)必能被6整除
1个回答
展开全部
证明:
∵n和n-1必是一奇一偶,
∴n(n-1)必能被2整除,
设n=3k,则n能被3整除,
设n=3k+1,则n-1能被3整除,
设n=3k+2,则2n-1=6k+4-1=6k+3能被3整除,
所以n(n-1)(2n-1)能被3整除,
∴n(n-1)州轿(枣州2n-1)能被册岩肆6整除.
∵n和n-1必是一奇一偶,
∴n(n-1)必能被2整除,
设n=3k,则n能被3整除,
设n=3k+1,则n-1能被3整除,
设n=3k+2,则2n-1=6k+4-1=6k+3能被3整除,
所以n(n-1)(2n-1)能被3整除,
∴n(n-1)州轿(枣州2n-1)能被册岩肆6整除.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询