求证:若a>0,b>0,c>0则a^a*b^b*c^c>=(abc)^(a+b+c)/3
展开全部
证:要证原不等式
即证 a^3a*b^3b*c^3c≥ (abc)^(a+b+c)
∵a>0,b>0,c>0
∴ (abc)^(a+b+c)>0,a^3a*b^3b*c^3c>0
相除有(a^3a*b^3b*c^3c)/(abc)^(a+b+c)≥1
化简a^(2a-b-c)*b^(2b-a-c)*c^(2c-a-b)≥1
再化简 a^[(a-b)-(c-a)]*b^[(b-c)-(a-b)]*c^[(c-a)-(b-c)]≥1
即(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∴要证原不等式
即证(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∵(a/b)^(a-b)≥1(分a>b,a<b讨论下就知道了)
同理)(b/c)^(b-c)≥1
(c/a)^(c-a)≥1
∴(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∴原不等式成立
即证 a^3a*b^3b*c^3c≥ (abc)^(a+b+c)
∵a>0,b>0,c>0
∴ (abc)^(a+b+c)>0,a^3a*b^3b*c^3c>0
相除有(a^3a*b^3b*c^3c)/(abc)^(a+b+c)≥1
化简a^(2a-b-c)*b^(2b-a-c)*c^(2c-a-b)≥1
再化简 a^[(a-b)-(c-a)]*b^[(b-c)-(a-b)]*c^[(c-a)-(b-c)]≥1
即(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∴要证原不等式
即证(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∵(a/b)^(a-b)≥1(分a>b,a<b讨论下就知道了)
同理)(b/c)^(b-c)≥1
(c/a)^(c-a)≥1
∴(a/b)^(a-b)*(b/c)^(b-c)*(c/a)^(c-a)≥1
∴原不等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询