用二重积分求下列曲线所围成的面积 y=x^2,y=x+2

 我来答
黑科技1718
2022-08-31 · TA获得超过5879个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82万
展开全部
先求直线与抛物线两个交点横坐标
y = x^2
y = x+2
x^2 -x -2 = 0
(x-2)(x+1) = 0
x1 = -1,x2 = 2
所求面积 = 直线从x1到x2 与X轴围成面积 - 抛物线从x1 到x2与X轴围成面积
S = ∫(x+2)dx -∫x^2 dx
= (x^2 /2 + 2x) - x^3/3 || 从x1 到x2
= [(2^2 /2 + 2*2) - 2^3/3 ] - [(-1)^2/2 + 2*(-1) - (-1)^3/3]
= [6 - 8/3] - [1/2 -2 + 1/3]
= 6 - 8/3 - 1/2 + 2 - 1/3
= 9/2
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式